Q1.

This question is about the structure of the atom.
(a) Complete the sentences.

Choose answers from the box.
Each word may be used once, more than once, or not at all.

electron		ion		neutron
	nucleus		proton	

The centre of the atom is the \qquad .

The two types of particle in the centre of the atom are the proton and the \qquad .

James Chadwick proved the existence of the \qquad .

Niels Bohr suggested particles orbit the centre of the atom. This type of particle is the \qquad .

The two types of particle with the same mass are the neutron and the \qquad .

The table below shows information about two isotopes of element \mathbf{X}.

	Mass number	Percentage (\%) abundance
Isotope 1	63	70
Isotope 2	65	30

(b) Calculate the relative atomic mass $\left(A_{r}\right)$ of element \mathbf{X} using the equation:
$A_{f}=\frac{(\text { mass number } \times \text { percentage }) \text { of isotope } 1+(\text { mass number } \times \text { percentage }) \text { of isotope } 2}{100}$
Use the table above.
Give your answer to 1 decimal place.
\qquad
\qquad
$A_{\mathrm{r}}=$ \qquad
(c) Suggest the identity of element \mathbf{X}.

Use the periodic table.
Element \mathbf{X} is \qquad
(d) The radius of an atom of element \mathbf{X} is $1.2 \times 10^{-10} \mathrm{~m}$

The radius of the centre of the atom is $\frac{1}{10000}$ the radius of the atom.
Calculate the radius of the centre of an atom of element \mathbf{X}.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
Radius = \qquad m
(Total 10 marks)

Q2.

This question is about atomic structure.
The figure below represents the structure of a lithium atom.

(a) Name the particle in the atom that has a positive charge.
\qquad
(b) Name the particle in the atom that has the smallest mass.
\qquad
(c) Complete the sentences.

Choose the answers from the box.

3	4	7	10

The mass number of the lithium atom is \qquad .

The number of neutrons in the lithium atom is \qquad .
(d) What are lithium atoms with different numbers of neutrons called?

Tick (\mathcal{V}) one box.

Compounds

Ions \square

Isotopes \square

Molecules \square
(e) Name the particle in the atom discovered by James Chadwick.
\qquad .
(f) An element has two isotopes.

The table shows information about the isotopes.

	Mass number	Percentage (\%) abundance
Isotope 1	10	20
Isotope 2	11	80

Calculate the relative atomic mass $\left(A_{r}\right)$ of the element.
Use the equation:
$A_{r}=\frac{(\text { mass number } \times \text { percentage }) \text { of isotope } 1+(\text { mass number } \times \text { percentage }) \text { of isotope } 2}{100}$
Give your answer to 1 decimal place.
\qquad
Relative atomic mass $\left(A_{r}\right)=$ \qquad
(g) The radius of an atom is 0.2 nm

The radius of the nucleus is $\frac{1}{10000}$ the radius of the atom.
Calculate the radius of the nucleus.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
Radius $=$ \qquad nm
(Total 10 marks)

Q3.
The electronic structure of the atoms of five elements are shown in the figure below.
The letters are not the symbols of the elements.

Element A

Element B

Element C

Element D

Element E

Choose the element to answer the question. Each element can be used once, more than once or not at all.

Use the periodic table to help you.
(a) Which element is hydrogen?

Tick one box.
A \square
B

C

D \square
E \square
(b) Which element is a halogen?

Tick one box.
A

B

C

D \square
E \square
(c) Which element is a metal in the same group of the periodic table as element \mathbf{A} ?

Tick one box.
A

B \square
C

D \square
E \square
(d) Which element exists as single atoms?

Tick one box.
A

B

C

D
E \square
(e) There are two isotopes of element A. Information about the two isotopes is shown in the table below.

Mass number of the isotope	6	7
Percentage abundance	92.5	7.5

Use the information in the table above above to calculate the relative atomic mass of element A.
Give your answer to 2 decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Relative atomic mass = \qquad

Q4.

Gold is mixed with other metals to make jewellery.
The figure below shows the composition of different carat values of gold.

(a) What is the percentage of gold in 12 carat gold?

Tick one box.

(b) Give the percentage of silver in 18 carat gold.

Use the figure above to answer this question.

$$
\text { Percentage }=\ldots \text { \% }
$$

(c) Suggest two reasons why 9 carat gold is often used instead of pure gold to make jewellery.

1. \qquad
\qquad
2. \qquad
\qquad

Q5.

There are eight elements in the second row (lithium to neon) of the periodic table.
(a) Figure 1 shows an atom with two energy levels (shells).

(i) Complete Figure 1 to show the electronic structure of a boron atom.
(ii) What does the central part labelled \mathbf{Z} represent in Figure 1?
(iii) Name the sub-atomic particles in part \mathbf{Z} of a boron atom.

Give the relative charges of these sub-atomic particles.
\qquad
\qquad
(b) The electronic structure of a neon atom shown in Figure $\mathbf{2}$ is not correct.

Figure 2

Explain what is wrong with the electronic structure shown in Figure 2.
\qquad
\qquad
\qquad
\qquad

Q6.

A student investigated the law of conservation of mass.
The law of conservation of mass states that the mass of the products is equal to the mass of the reactants.

This is the method used.

1. Pour lead nitrate solution into a beaker labelled \mathbf{A}.
2. Pour potassium chromate solution into a beaker labelled B.
3. Measure the mass of both beakers and contents.
4. Pour the solution from beaker B into beaker \mathbf{A}.
5. Measure the mass of both beakers and contents again.

When lead nitrate solution and potassium chromate solution are mixed, a reaction takes place.
This is the equation for the reaction:

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

(a) What would the student see when the reaction takes place?
\qquad
\qquad
(b) The table shows the student's results.

	Mass in g
Beaker A and contents before mixing	128.71
Beaker B and contents before mixing	128.97
Beaker A and contents after mixing	154.10
Beaker B after mixing	103.58

Show that the law of conservation of mass is true.
Use the data from the table above.
\qquad
\qquad
(c) What is the resolution of the balance used to obtain the results in the table?

Tick (\checkmark) one box.
0.01 g \square
0.1 g
\square
1 g \square
100 g
\square
(d) Calculate the relative formula mass $\left(M_{r}\right)$ of lead nitrate $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Relative atomic masses $\left(A_{r}\right): \quad N=14 \quad \mathrm{O}=16 \quad \mathrm{~Pb}=207$
\qquad
\qquad
\qquad
\qquad
Relative formula mass $=$ \qquad
(e) The formula of potassium chromate is $\mathrm{K}_{2} \mathrm{CrO}_{4}$

The charge on the potassium ion is +1
What is the formula of the chromate ion?
Tick (\checkmark) one box.

$\mathrm{CrO}_{4}{ }^{2+} \quad \square$
CrO_{4}^{-} \square
$\mathrm{CrO}_{4}{ }^{2-}$ \square
(f) Another student also tests the law of conservation of mass using the same method.

The student uses a different reaction.
This is the equation for the reaction.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Explain why this student's results would not appear to support the law of conservation of mass.
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.

(a) nucleus
neutron
neutron
electron
proton
must be in this order
(b)
(A) $\frac{(63 \times 70)+(65 \times 30)}{100}$
$=63.6$
an answer of 63.6 scores 2 marks
(c) copper / Cu allow ecf from answer to question (b)
(d) $\frac{1.2 \times 10^{-10}}{10000}$
or
$1.2 \times 10^{-10} \times 1 \times 10^{-4}$
$=1.2 \times 10^{-14}(\mathrm{~m})$
an answer of $1.2 \times 10^{-14}(\mathrm{~m})$ scores 2 marks a correct answer not in standard form scores 1 mark

Q2.
(a) proton
(b) electron
(c) 7
(d) isotopes
(f) $\frac{(10 \times 20)+(11 \times 80)}{100}$

$$
=10.8
$$

(g) $\frac{0.2}{10000}$

$$
=2 \times 10^{-5}(\mathrm{~nm})
$$

allow 0.00002 (nm)
an answer of $2 \times 10^{-5}(\mathrm{~nm})$ scores 2 marks

Q3.
(a) B
(b) D
(c) E
(d) \mathbf{C}
(e) 92.5×6 and 7×7.5
$\frac{607.5}{100}$
6.075
6.08

Q4.
(a) 50
(b) 5%
(c) any two from:

- cost (9 carat is cheaper)
- pure gold is soft
or
24 carat gold is soft
or
9 carat gold is harder
allow 9 carat gold is stronger
allow gold is an alloy in 9 carat gold
- can change the colour

Q5.
(a) (i) electronic structure 2,3 drawn
allow any representation of electrons, such as, dots, crosses, or numbers $(2,3)$
(ii) nucleus
(iii) protons and neutrons
do not allow electrons in nucleus
(relative charge of proton) +1
allow positive
(relative charge of neutron) 0
allow no charge/neutral
ignore number of particles
(b) too many electrons in the first energy level or inner shell
allow inner shell can only have a maximum of 2 electrons
too few electrons in the second energy level or outer shell
allow neon has 8 electrons in its outer shell or neon does not have 1 electron in its outer shell
allow neon has a stable arrangement of electrons or a full outer shell
neon does not have 9 electrons or neon has 10 electrons
allow one electron missing
allow fluorine has 9 electrons
ignore second shell can hold (maximum) 8 electrons or 2,8,8 rule or is a noble gas or in Group 0
max 2 marks if the wrong particle, such as atoms instead of electrons
if no other mark awarded allow 1 mark for the electronic structure of neon is 2,8

Q6.
(a) precipitate / solid formed
allow colour change
(b) total mass before $=257.68 \mathrm{~g}$
total mass after $=257.68 \mathrm{~g}$
so the mass of products equals
the mass of the reactants
(c) 0.01 g
(d) $207+(2 \times 14)+(6 \times 16)$
or
$207+2 \times[14+(3 \times 16)]$
$=331$
an answer of 331 scores 2 marks
(e) $\mathrm{CrO}_{4}{ }^{2-}$
(f) carbon dioxide is a gas
allow a gas is produced
the gas escapes during the reaction
(so) the mass at the end is less than expected

