

### Further Maths intent statement

### Year 12:

| Half term 1            | Half term 2      | Half term 3        | Half term 4          | Half term 5 | Half term 6           |
|------------------------|------------------|--------------------|----------------------|-------------|-----------------------|
| Algorithms             | Argand diagrams  | Linear Programming | Roots of Polynomials | Revision    | Further Algorithms on |
| Graphs and networks    | Series           | Game Theory        | Vectors              |             | Networks              |
| Algorithms on          | Route inspection | Allocation         | Volumes of           |             | Further Route         |
| networks               | Flow             | Linear             | revolution           |             | Inspection            |
| Critical path analysis |                  | transformations    |                      |             | Travelling Salesman   |
| Complex numbers        |                  | Proof by induction |                      |             | Simplex Algorithm     |
| Matrices               |                  |                    |                      |             |                       |
|                        |                  |                    |                      |             |                       |

#### Year 13:

| Half term 1         | Half term 2     | Half term 3            | Half term 4            | Half term 5 |
|---------------------|-----------------|------------------------|------------------------|-------------|
| Further Flows in    | Complex Numbers | Differential equations | Modelling with         | Revision    |
| Networks            | Series          | Polar coordinates      | differential equations |             |
| Transportation      | Volumes of      |                        | Methods in calculus    |             |
| Dynamic             | revolution      |                        | Hyperbolic             |             |
| Programming         | Hyperbolics     |                        | integration            |             |
| Further Allocation  |                 |                        |                        |             |
| Further Game Theory |                 |                        |                        |             |
| Decision analysis   |                 |                        |                        |             |



| Y12         | Unit                   | Students will learn about:                                           |  |
|-------------|------------------------|----------------------------------------------------------------------|--|
|             | Algorithms             | The idea of an algorithm                                             |  |
|             |                        | Bubble sorts, quick sorts and bin packing                            |  |
|             |                        | The order of an algorithm                                            |  |
|             | Graphs and networks    | The language associated with graphs and networks                     |  |
|             |                        | <ul> <li>Using matrices to represent graphs and networks</li> </ul>  |  |
|             |                        | <ul> <li>Planar graphs and the planarity algorithm</li> </ul>        |  |
| erm 1       | Algorithms on networks | Prim's and Kruskal's algorithms for finding a minimum                |  |
|             |                        | spanning tree                                                        |  |
|             |                        | <ul> <li>Dijkstra's algorithm for finding a shortest path</li> </ul> |  |
|             | Critical path analysis | • Precedence tables and activity networks including the use of       |  |
|             |                        | Dummies                                                              |  |
| llf t       |                        | Early and late event time                                            |  |
| На          |                        | Critical events, critical activities, critical paths and float       |  |
|             |                        | Gantt (cascade) charts, resource histograms and scheduling           |  |
|             |                        | diagrams                                                             |  |
|             | Complex numbers        | <ul> <li>The definitions of imaginary and complex numbers</li> </ul> |  |
|             |                        | To perform the 4 operations on complex numbers including             |  |
|             |                        | learning about the complex conjugate                                 |  |
|             |                        | To solve cubic or quartic equations that have complex roots          |  |
|             | Matrices               | The definition of a matrix                                           |  |
|             |                        | • To add, subtract and multiply matrices including the conditions    |  |
|             |                        | for the calculations and to multiply a matrix by a scalar            |  |
| Half term 2 | Argand diagrams        | What an Argand diagram is                                            |  |
|             |                        | • To represent complex numbers, loci and regions on a n Argand       |  |
|             |                        | diagram                                                              |  |
|             |                        | About the modulus argument form of a complex number                  |  |
|             | Series                 | The standard results for summation and how to apply them             |  |
|             | Route inspection       | Eulerian and semi-Eulerian graphs                                    |  |



# St Benedict's Catholic High School

|             |                        | • The route inspection algorithm for graphs with 2 or 4 odd vertices                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Flow                   | <ul> <li>The language and notation of flow</li> <li>Cuts and calculating their value</li> <li>Finding and improving flow patterns including using the maximum flow minimum cut theorem</li> </ul>                                                                                                                                                                                                                                                                                                      |
|             | Linear Programming     | <ul> <li>Formulating linear programming problems</li> <li>Graphing linear programming problems</li> <li>Using the objective line method and vertex testing to solve linear programming problems including finding integer solutions when required</li> </ul>                                                                                                                                                                                                                                           |
| Half term 3 | Game Theory            | <ul> <li>The concept of a zero sum game</li> <li>Play safe strategies, stable solutions, reducing a payoff matrix and determining the optimal mixed strategy for a game with no stable solution</li> </ul>                                                                                                                                                                                                                                                                                             |
|             | Allocation             | <ul> <li>The Hungarian algorithm and how to apply it</li> <li>How to adapt a non-square allocation problem, a maximise problem, a problem with incomplete data or a mix of the about to use the Hungarian algorithm</li> </ul>                                                                                                                                                                                                                                                                         |
|             | Linear transformations | <ul> <li>Using matrices to represent linear transformations in 2-D and 3-D</li> <li>Invariant points and invariant lines</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |
|             | Proof by induction     | • The principle of proof by induction and how to apply it to prove results about sums of series, divisibility and matrices                                                                                                                                                                                                                                                                                                                                                                             |
|             | Roots of Polynomials   | <ul> <li>The relationships between the roots and coefficients of quadratic, cubic and quartic equations</li> <li>Applying linear transformations to roots of polynomials</li> </ul>                                                                                                                                                                                                                                                                                                                    |
| Half term 4 | Vectors                | <ul> <li>The vector and Cartesian forms of an equation of a straight line in 3-D.</li> <li>The vector and Cartesian forms of the equation of a plane.</li> <li>The scalar product and use it to express the equation of a plane, and to calculate the angle between two lines, the angle between two planes and the angle between a line and a plane</li> <li>To check whether vectors are perpendicular by using the scalar product.</li> <li>Find the intersection of a line and a plane.</li> </ul> |



# St Benedict's Catholic High School

|                |                                   | • Calculate the perpendicular distance between two lines, from a point to a line and from a point to a plane.                                                                                                                                                                                                                                                                                   |
|----------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Volumes of revolution             | <ul> <li>Calculating volumes of revolution for curves rotated around<br/>the x and the y axis, limited to Integrating functions of the<br/>form x<sup>n</sup> (excluding n = -1) and related sums, differences and<br/>constant multiples</li> </ul>                                                                                                                                            |
| Half<br>term 5 | Revision                          | Topic revision progressing to complete papers                                                                                                                                                                                                                                                                                                                                                   |
|                | Further Algorithms on<br>Networks | Floyds algorithm                                                                                                                                                                                                                                                                                                                                                                                |
| Half term 6    | Further Route Inspection          | The route inspection algorithm for graphs more than 4 odd nodes                                                                                                                                                                                                                                                                                                                                 |
|                | Travelling Salesman               | <ul> <li>The practical and classical travelling salesman problems</li> <li>Determining upper and lower bounds using minimum spanning tree methods</li> <li>The nearest neighbour algorithm</li> </ul>                                                                                                                                                                                           |
|                | Simplex Algorithm                 | <ul> <li>Formulating linear programming problems for use with the simplex algorithm including the use of slack, surplus and artificial variables</li> <li>The Simplex algorithm and tableau for maximising and minimising problems with ≤ constraints</li> <li>The two-stage Simplex and big-M methods for maximising minimising problems which may include both ≤ and ≥ constraints</li> </ul> |